COTS Effect of support material Al_2O_3 vs ZrO_2 -TiO₂ on the Ba availability ENS for NSR catalyst: an *in situ* and *operando* IR study EN S. Palma del Valle^a, H. P. Nguyen^b, O. Marie^a

Laboratoire Catalyse et Spectrochimie, CNRS, ENSICAEN, University of Caen, 6 Bd. du Maréchal Juin, 14050 Caen, FRANCE Catalysis research/Advanced technology-Toyota motor Europe NV/SA, Hoge wei 33, B-1930 Zaventem, Belgium

Introduction

NOx storage and reduction (NSR) is an essential technology for removal of nitrogen oxides (NO and NO₂ or NOx) from exhaust gases of Diesel or gasoline lean-burn engine. This technology is based on catalytic formulations comprising 3 major components: 1) a platinum group metal (PGM); 2) a NOx storage material; and 3) a support. The commonly studied NSR catalyst is $Pt-Ba/Al_2O_3$, however viable no solution was found to its main causes of deactivation, being sulfurand/or thermal poisoning deterioration ^[1]. One way to improve the sulfur tolerance, consists in replacing the support by titanium dioxide (TiO₂). This support offers decomposition sulfates lower temperature than the original Al_2O_3 support. Moreover, the thermal stability of the catalytic formulation the increased by be can incorporation of ZrO_2 to $TiO_2^{[2]}$.

(**b**) 500

ž 400

ddg 300

Total Nox 100

0

473 K

723 K

500

1000

NO_x storage and reduction (NSR)

No vertical

concentration

gradients

Steady state isotopic transition kinetic analysis

Goals

The present investigation aims at elucidating the interaction between the barium storing phase and the oxide support $(Al_2O_3 \text{ or } ZrO_2\text{-Ti}O_2)$,

At both low and high T : short TOS => ZT traps more than Al high TOS => similar full trapping capacity Samples composition 1% wt. Pt/11%wt. Ba/ Al₂O₃ 1% wt. Pt/ 11% wt. Ba/ZrO₂-TiO₂ (70% ZrO₂ -30% TiO₂) provided by Toyota company.

Support directly involved or distinct diffusion rate into Ba particles?

In situ characterization : NO₂ adsorption

Pt/Ba/ZrO₂-TiO₂

2500

3000

Pt/Ba/Al₂O₃

Time / s

	Al_2O_3	Ba/Al ₂ O ₃	ZrO_2 -Ti O_2	Ba/ZrO ₂ -TiO ₂
pecific Area BET) m ² .g ⁻¹	200	200	100	100
O ₂ adsorbed	n/mmol.g ⁻¹ (saturation)	n/mmol.g ⁻¹ (saturation)	n/mmol.g ⁻¹ (saturation)	n/mmol.g ⁻¹ (saturation)
DT	/	1 / 8	/	1 /1

in order to understand the distinct dynamic behaviors observed during the lean storing period.

Tools

Operando IR spectroscopy in combination with isotopic labeling is a powerful technique that allow us determining the superficial modification under duty conditions

Conclusions

The interaction of Ba phase with different oxide supports provokes different Ba particles morphologies and as consequence changes of the properties during dynamic storage of NOx.

		,	20.0	,		
leated @ 380	С	1.35	1.07	1.81	1.68	

The 'model'

 Al_2O_3 : 6.75 10⁻³ mmol.m⁻² and ZrO₂-TiO₂: 1.81 10⁻² mmol.m⁻²

Application: SSITKA of NO storage at 450° C

concentration of the higher The 'anchoring' sites for the ZT oxide support leads to a higher amount of finely dispersed Ba when more compared to Al_2O_3 . The full storage capacity for both formulations is thus similar but under realistic NSR cyclic conditions the Pt/Ba/ZrO₂-TiO₂ will lead to a higher NOx adsorption efficiency related to a higher (faster) availability of the whole Ba sites.

References

[1] A. William, S. Epling, L.E. Campbell, N.W. Currier and J.E. Parks, Catal. Rev. Sci. Eng. 46, 2004, 1–72

[2] N. Hachisuka, I. Yoshida, T. Ueno and H. Takahashi, SAE Tech. Pap. 2002

(a) 300 sec: higher amount of Ba(NO₂⁻) (a) 200° C and Ba(NO₃⁻) (a) 450° C over ZT => faster diffusion into smaller Ba particles.

Diffusion 'time' into Ba particles core depends on the Ba particles size Support effect

Quasi - complete exchange ${}^{14}NO_3^- \rightarrow {}^{15}NO_3^-$ species